منابع مشابه
On uniform approximation by splines
for 0 ≤ r ≤ k − 1. In particular, dist (f, S π) = O(|π| ) for f ∈ C(I), or, more generally, for f ∈ C(I), such, that f (k−1) satisfies a Lipschitz condition, a result proved earlier by different means [2]. These results are shown to be true even if I is permitted to become infinite and some of the knots are permitted to coalesce. The argument is based on a “local” interpolation scheme Pπ by spl...
متن کاملUniform Approximation on Riemann Surfaces
This thesis consists of three contributions to the theory of complex approximation on Riemann surfaces. It is known that if E is a closed subset of an open Riemann surface R and f is a holomorphic function on a neighbourhood of E, then it is “usually” not possible to approximate f uniformly by functions holomorphic on all of R. In Chapter 2, we show, however, that for every open Riemann surface...
متن کاملWeierstrass and Uniform Approximation
We present the theorem of uniform approximation of continuous functions by polynomials in the Weierstrass framework for the construction of analysis based on the representation of functions by sums of power series and analytic functions, and his effort to bring new standards of rigor to analysis that accompanied his differences with Riemann. We also describe the most original proofs of the appr...
متن کاملUniform Approximation Through Partitioning
In this paper, the problem of best uniform polynomial approximation to a continuous function on a compact set X is approached through the partitioning of X and the definition of norms corresponding to the partition and each of the standard Lp norms 1 g p < oo. For computational convenience, a pseudo norm is defined corresponding to each partition. When the partition is chosen appropriately, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2002
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171202012899